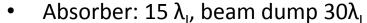
Proposal: Develop a Polarized Dimuon Experiment @Fermilab

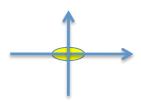
- Physics Goals: Physics with single spin asymmetry
 - Transverse SSA in Drell-Yan to test sign change, a test of fundamental QCD prediction:

$$f_{Siv}^{DIS}(x, k_T) = -f_{Siv}^{DY}(x, k_T)$$

- TSSA in J/Psi with polarized target
- Polarized targets, but no polarized beams


- NH₃, pol = 80%, D= 0.22
- LiD, Pol = 25%, D = 0.45
$$\delta A_N = \frac{1}{D \cdot P} \cdot \frac{1}{\sqrt{N}}$$

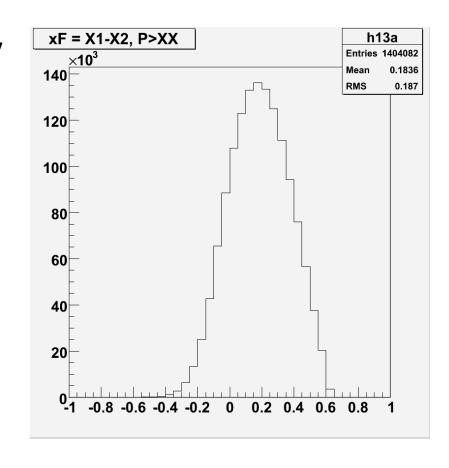
E906 parameters @ Main Injector


- Beam energy = 120GeV
- Beam structure and profile:
 - 2x10¹² protons/sec, for 5 sec/per min
 - Beam size: σ_x < 10mm and σ_v < 5mm,
 - Two years' total = $7x10^{18}$, 15% efficiency

pT kick ~ 2.5GeV

- Energy loss = 3.5GeV, E906 cut: p > 15GeV
- Multiple scattering 170/p mr
- Mass resolution = 240MeV @J/Psi
- Targets: $< 15\% \lambda_1$
 - 50.8cm liquid hydrogen and deuterium
 - ¹²C, ⁵⁶Fe, W

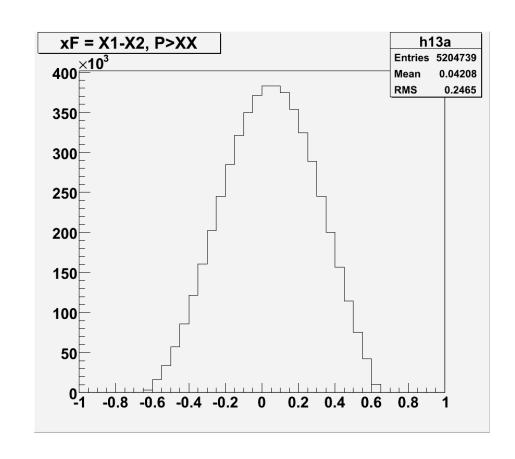
Our Proposal


- Polarized target R&D in collaboration with UVA:
 - $-NH_3$:
 - JLab, current Hall C target, for benchmark
 - LANL target.
 - R&D for high intensity proton beams @120GeV
- Detector simulation and reconfiguration
 - Explore wider kinematic, particularly the negative xF region to test the sign change in DY Transverse SSA
- A DOE proposal for a follow up polarized target dimuon experiment after E906.

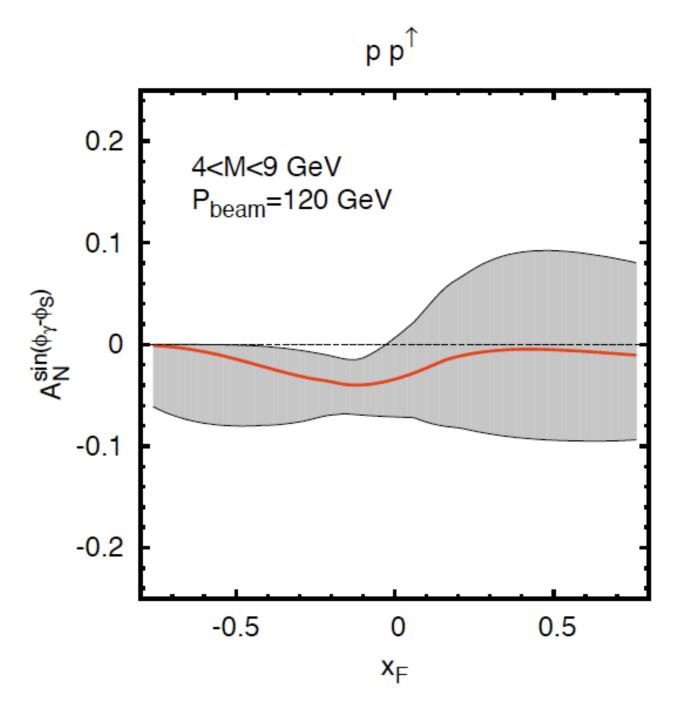
Pythia Simulations

- Fixed target 120 p+p,
 - 30M events with M>4GeV => $1.3x10^{16}$ p+p collisions
 - $1.3x10^{16}/7x10^{17}=1.8\%$ of two year delivered protons with 100% collisions
 - This is equivalent to 2x9 months E906 run with 50cm hydrogen target
 - Minimum P > 5, 10, 15 GeV
 - Included both mu+mu and e+e channels for statistics
- Target length:
 - JLab 3cm NH₃ for bench mark
 - need ~30cm target?
- Simulation plots
 - http://p25ext.lanl.gov/~ming/E906/pythia_sim/

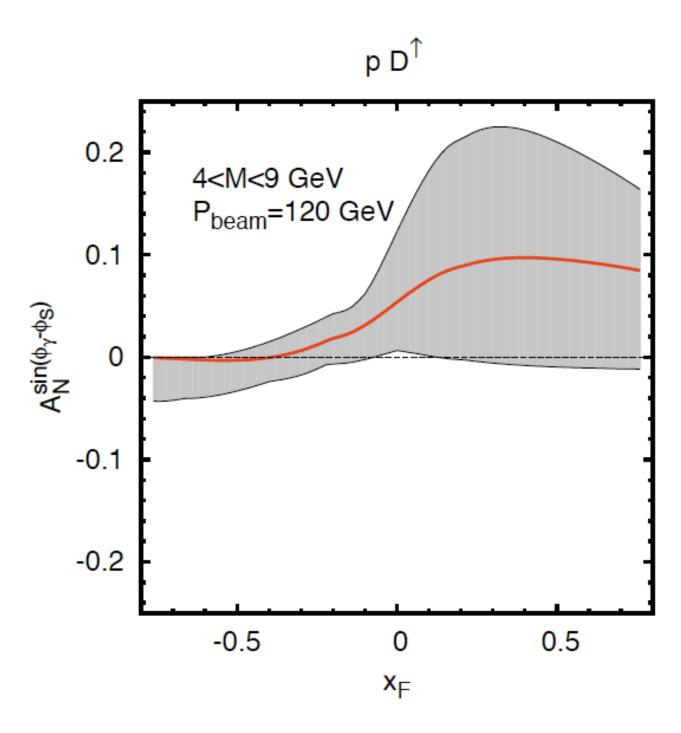
Benchmark 2x30M to E906 Run


- M>4.2 and Pz > 15GeV
- Total events: 1.4M
 - Equivalent to 4x9 months E906 run (~400K)
 - 50cm liquid hydrogen target (eq. ~4 cm NH₃)

Pol target Experiment


- M>4GeV, P > 5GeV to access negative xF
- 5.2M events
 - 4x9months E906 run
 - 50cm liquid hydrogeneq. target

$$\delta A_N = \frac{1}{D \cdot P} \cdot \frac{1}{\sqrt{N}}$$


Sensitivity plots

Anselmino group's calculations:

I. P_z >15 GeV/c 4 x-bins in x_F =0.0-0.4 100k DY events in each bin. $\delta(A_N)$ =±1.8%

II. $P_z>5$ GeV/c 8 x-bins, in xF=-0.4~0.4. 200k DY events each. $\delta(A_N)=\pm 1.3\%$.

